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Umlng t -  .)3 x 2~ and 161 X 32 lattices w ~  two f l a i r s  of  ~ r ~  ~ s o n  f ~  at a va~ety o6 
~oes  of ~ and ,++ two ~ of e ~  p ; ~  are immsti~_~. We c~k:~t,ne/= at se~er'~ val~es o~ 

~ ,  a~,td ~ the ~ mcm~e~t of the pio~% q~rlk d i ~ r [ i ~ t ~  amp/i~<~e. 

1. |NTRODUCTION 
in t l ~  paper mee presen~ the l~ll',~t reSll~ of a 

moje~ to ;m~s~ate ba&o=~ ~ ba~ea ¢= a 
simulation d f ~  ~ with t m  & ~ e e ~ a t e  ~ _ , s  
of Wdson ~ 1. 5 o f = ,  ~e b a ~ , ~ d t s f o r  the 
p~e ae~y o = ~ = t .  Jr,  a=! for t l~  ~ mommt 
of the q,.,+,.k a isu ibmio. .ampr ,  t,,,m+ = the p;o.  2, 

c.~o ~ e = ~ m  3. a=d q==~ m - = ~ = ~  . ~ e  ~=~ 
seqne .dy  ~ on tlm;e ~ ah.e+ ,'eplkat- 
ing orme in t i e  time 6eeclion. Latlkes are aaalysd  
appm=imatdy eveey 20 time mits ~dd= a= am~alp~ 
aa :ep tan~  rate of  aSo . t  70'j~. We 4Fmd eb, at t l~  
5gStest ,~alue of tSe l i=n =r=~ = u ~  in t t ~  =i~- 
dadom is a ~  600 MeV, and so-,e expect 
the efl~ect of  m~ludiag d y n a m ~ l  qua~s  ~a these din- 
ulatiom to be mnaU c o m p e ~  to the  plepkal ~mdd. 

It should be pointed o=t that t i~  mpdate m t i~  
t lyb~l Monte Carlo ru~  m the 16 ~ latt i~s i=~aRy 
had an emr~. Siege fixing this bug we haze Rot 
no~c~ any systemat~ sl~[t in the resuh~ Some 
bdieve that the ~ t  error ;s of the same or(k~r as 
the stal~-dcal errors. The more severe [ n ~ E ( m  of 
th~ w~.!cu.lation is that we have very few decom~ted 
lattices in our statistical sample. Nevertheless, we 
consider it wmthwhile to analyse this data since th;s 
is an exploratory calculat ion.  

The quark propagators were computed from a 
"smeare(r' source at a fixed time slice to. The Wup- 
pertal smearing method was used 4. in which the 
source S(~-') is the solution of the three dimensional 
gauge covariant scalar equation, 

(-~+ +,-+)s(+ = ,++,o-. 
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Table 1. R e s ~  ~ f=_ 

Tlbe ~maMe mrame' .~  m .  row/b¢ negarded as = 
" ~ "  qmmli m a ~  T ~  g a ~ i m ~ e i a ~  m ~  

ovedap w i ~  the ~ ~ d Iow4yieg ~ i ~ o ~  
states  so  tha t  they ~ the  ~ d ~ ¢ e -  
ladem ~ aher o~ly a fe~ zhne sr~es. ~ t l ~  
~ m .  ~ d ~ s m  r o g u e  a ~ e a ~ g  ~ 

ml~sing t e c h ~  in t ~  f.tme+ 
TI.~ ~ for the ~ t J o m ~  ~ i .  

~ me~su~m~ments ~ ~ in ~b le  L ~ ~ fl'Je 

t ime dlce at  ~ the  l i r a  dom/emtes t l~  ~ - ~  cor- 
relali0m f u n d i m ,  a . d  m ~  is ~ in l a n c e  u ~ .  

tl;1131 column ~ the value d fro-. d ' ~  in 
the ne~ secdon. 

The ~dng  method used to extract m= in ta- 
ble 1. and used througlmut the (alc~Jlations pre~nted 
below, was as follows: we first exam;ned the e~ec- 
rive mass plot to determine the range of tit over 
which the pJon saturates the 2-point correJator. We 
then used a single elimination "jackknife" method 
calculating X 2 for each sample using the correlated 
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covariance matrix. In some cases we found that the 
covariance matrix was almost singular and/or the fit 
value for the energy was very different from the ef- 
fective energy. This bad behavior is due to the small 
statistical sample. In these cases we quote results 
which minimize the naive X 2. 

2. THE PION DECAY CONSTANT 
The pion decay constant, f~,  is a fundamental 

parameter of  QCD, characterizing the breaking of  
chiral symmetry. On the lattice with Wilson fermi- 
ons, it is defined by 

(01A.(0)I~(p-')) = z~'Ap. (1) 

where A~ is a lattice transcription of the axial cur- 
rent. We will use the local current 

A~(x) = d2(X)TsT~¢(x). 

The renormalization constant, ZA, which relates this 
operator to the partially conserved continuum oper- 
ator, is not known precisely. In perturbation theory, 
ZA = 0.87 at g2 = 1, but quenched simulations 
show this to be inaccurate 5. We will assume a value 
for ZA of  around 0.8. 

To determine the matrix element (1), we exam- 
ine the large time behaviour of  the correlators 

KSL(t'P3 = Z eif'Z{A"(~' t)J(g, O)t), 

CSS(t, p3 ~--- ZeiP'~(J(:~,~)J(6,0)t), (2) 

z 

where J(~)  = . ( ~ )  = ~ ( ~ ) 7 s ¢ ( ~ )  or g(~)  - A~(~) 
are two local interpolating operators for the pion. 
The superscripts SL and SS stand for "smeared- 
local" and "smeared-smeared", referring to the fact 
that we have smeared the propagators at the source 
only (SL), or at both source and sink (SS). 

Far from the source, these correlators are domi- 
nated by the propagation of  the lightest particle hav- 
ing an overlap with the interpolating operators, so 
that 

KSL(t,p ") ~ e -~(~' 2--~-~-~ (01A.(0) I,~(p))(~(p)I J(0)t 10), 
e-E(Dr 

cSS(t,p'3 ~ yk-~- I (01J (0) l ,KP) ) l  ~, 

where E(p-) ,~ ~ + m~. For periodic boundary 
conditions there is a similar contribution from the 

i 0 , 8 = 5 . 4  o.4 o f l  = 5.5 
D /2 = 5.6 

~ 0 . 3  
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Figure 1. f=  at zero momentum. 

propagation of  the particle backwards around the lat- 
tice. 

To extract fTr from these correlators we use two 
methods. In method 1 we f i t  to the ratio of  I (  sL 
and the pion corrdator C ss to cancel the exponen- 
tial fall off. The amplitude at the source which we 
need to remove is obtained from an independent fit 
to  C ss. In method 2, we determine the amplitude 
and energy from separate single particle fits to the 
corrdators art" sL and C ss. tn this way we extract 5 
parameters: ASL, ESL, Ass, Ess and R where we as- 
sume that the long time behavior of  the correlator is 
of  the form A e x p - E t ,  and R is the ratio extracted 
directly. The final value of f=  is given by 

1 1 ESL ,, 
_ P~, Y Ess  ' 

1 2 2AsLEsL 

iJ/z V ~ S S  " SS 

for the two methods. We find that method 1 gives 
more stable results and the best estimate is obtained 
using the time component of  the axial current and 
at zero momentum. The pseudoscalar density is 
marginally better as the pion operator. Our best 
estimate for Z~lf= is given in the final column of 
table 1. 

Figure 1 expresses our results in more physical 
terms. We plot ZAlfTr/mo versus (m~/mp) 2. Also 
shown are the physicai points for the pion and kaon 
(for which the relevant vector meson is I {*(892)),  
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and these values rescaled by ZA = 0.8. As is evident, 
there is good agreement between the simulation re- 
suits and these rescaled points. Also Z~If~/mp is 
essentially independent of both the quark mass and 
the lattice spacing. 

We also measured f~ at momenta (0, 0,1) and 
(0,1,1), using both space and time components of 
the axial current. We find these results consistent 
with the zero momentum values, though the errors 
are a little larger. This is evidence that for the small 
momenta we are considering, Euclidean symmetry 
holds to a good approximation. This can be further 
investigated by studying the dispersion relation L ~z + 
~2 ~ ra2 For the pion, this holds well for the the two 
momenta we are considering (except at the strongest 
coupling). For larger momenta there appear to be 
deviations and the errors become very large. 

3. THE DISTRIBUTION AMPLITUDE 
In the approach of Brodsky and Lepage 6 to ex- 

clusive hadronic processes at large momentum trans- 
fer (high QZ). the scattering amplitude is approxi- 
mated by the convolution of a perturbatively calcu- 
lable hard scattering amplitude with wave functions 
describing the overlap of the participating hadrons 
with their lowest Fock state. These wave functions 
- the quark distribution amplitudes in the hadron 
- are hypothesized to contain the non-perturbatlve 
physics. 

The distribution amplitude for the pion, ~, de- 
pends on ~ = x e - x~, where xq and x¢ are the 
fractional light-cone momenta carried by the quark 
and antiquark respectively, as well as on the renor- 
realization scale Q2 at which the wave function is 
defined. The general features of ~(~,Q2) can be de- 
duced from its moments (~n) = f-~l d~n~(~,Q2)" 

is normalized such that (~0) = 1, and odd mo- 
ments vanish by parity. The moments are related to 
the matrix elements of the local operators 

0 (") = i"~%,oTsD~,~D~,~...Dt~.~b, #Opl . . . l~n  

through the operator product expansion, giving 

(o[o~,~),. . . , .  I - ( v ) )  = f , ,p,op,, . . .p, .  (~"). (3) 

The operators are understood to be traceless, and 
in this study we symmetrize over Lorentz indices, 
though eq. (3) holds in any case, as a consequence 
of Lorentz covariance. The Q:~ dependence of th'ese 
matrix elements is calculable within perturbation the- 
ory, and consequently the large-Q 2 form of the wave 

function is known, giving l~ 2) = 0.2. At accessible 
energy scales non-perturbative techniques are nec- 
essary. We mention previous calculations using two 
methods: sum rules and lattice QCD. 

Sum rule estimates 7 give the surprising result 
(~2) ~ 0.4 at Q2 = (0.5 GeV) 2, indicating a small 
amplitude for momentum to be shared evenly be- 
tween constituents. Two (quenched) lattice calcula- 
tioos gave the results (~2)latt = 0.26 + 0.138, and 
(~2)latt =- 0.30+0.13 g. The subscript indicates that 
these are bare lattice numbers. To compare to con- 
tinuum measurements we need to include a renor- 
malization constant which, at g2 ~ 1,  Q 2  = a-2 
(2 GeV) 2, will probably increase these results by 1.2- 
1.4 (though the exact value is not known). Within 
errors these lattice calculations agree with the sum 
rule estimates, but the errors are very large. 

To extract (~2) we study the ratio of two corre- 
lators: 

SL i~-~ (2) ~ ~ t K;.,,(t,p-') = ~__~ (O.,..(x,t)J(O,O) ), 
Z 

and K~ !" of eq. (2)- Because of the absence of Eu- 
clidean symmetry we must be careful to choose an 
operator, O (2), which does not mix with lower dimen- 
sional operators 8. Satisfactory choices are O1~)3 - 

(2) ~(2) ~ and ,~(2) For each of these we 1/2(O~11 + v42zJ ~423- 
can divide by either/x~ L or K sL, and we denote the 
four possible ratios by R~ a3 and _~23 Away from 4,3 4,3 " 
source, these should be constant in time: 

_ ~ 3 3  2 
4 ,3  = p3p3,4(~ h~-, 

23 2 

The minimal momenta for which these do not vanish 
are (0, 0,1) and (0,1,1) respectively. From our anal- 
ysis of fe we believe the granularity of the lattice is 
not a severe problem for these momenta. 

A greater problem is having sufficient statistics 
to extract a signal. We believe the signal we obtain 
is significantly better than in previous lattice studies 
(though still poor), and attribute this improvement 
to the use of smeared propagators. 

Our results for (~ ¢2) are given in table 2. In 
figure 2 we plot our best results, those for /~433 4,3 , 

versus (m~/rao) 2. From this graph it is difficult to 
draw any conclusions about the behaviour of (~') 
with the quark mass. Assuming weak dependence 
on the quark mass, we average our data to find 

(~)~,,t = 0.10 using R ~ ,  

<¢2)latL = 0.11 using R~2 3. 
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0.074(9) 0.103(6) 
0.085(9) 0.133(6) 
0.092(4) 0.092(11) 
0.081(11) 0.062(18) 
0.109(4) 0.139(19) 
0.101(15) 0.130(18) 
0.086(10) 0.138(9) 
0.097(10) 0.099(16) i 

l I 
0.092(11) 0.119(13) 
0.099(13) 0.147(10) 
0.105(19) 0.122(8) 
0.103(19) 0.056(23) 
0.123(6) 0.148(11) 

0.105(15) 0.127(23) 
0.084(9) 0.131(21) 

0J00(13),  0.102(17) 

Table 2. Results for (~2). Rows correspond to the 
same parameter values as in table 1. 

We do not quote an error, leaving it to the reader to 
decide on the reliablility of our results by examining 
table 2. 

These results are much lower than the previous 
lattice estimates, but the errors quoted in these pa- 
pers were very large. More significant is the discrep 
ancy between our result and sum rule calculations 7. 
Even allowing for a large error in our result, i t would 
require a very large renormalization constant and/or 
strong quark mass dependence to reconcile the ~ .  

4. SUMMARY AND CONCLUSIONS 
Using a variety of lattice parameters, and includ- 

ing the effects of two flavours of Wilson fermions, 
we have measured f x  and the second moment of the 
quark distribution amplitude in the pion, (~2). Both 
of these measurements require that we extract 1he 
residue of the pion's contribution to various correla- 
tots. The use of "smeared" sources has allowed this 
to be done more cleanly than before. 

For f~ we see approximate momentum indepen- 
dence for the three momenta considered. The actual 
value of f= for all three values of f l agrees well with 
the physical value assuming a lattice renormalization 
constant for the axial current of around 0.8. 

Our measurements of {~2) suggest that the frac- 
tional light-cone momentum of the pion is divided 
more evenly between the component quark and an- 
tiquark than previous studies, using sum-rules and 
quenched lattice QCD, have indicated. 

0.2 X ]:?433 
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Figure 2. t~ 2) from R *~ 
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